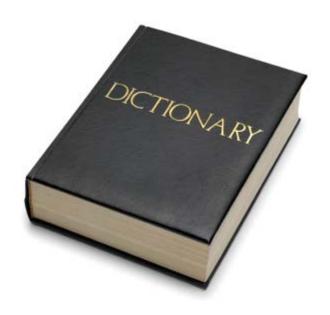


Treatment of pleural empyema



University of Torino, Department of Thoracic Surgery

DEFINITIONS

Parapneumonic effusion is any pleural effusion associated with a suppurative parenchymal lung disease

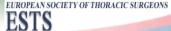
SIMPLE Parapneumonic Effusion is an uninfected, free-flowing fluid collection

COMPLICATED Parapneumonic Effusion is an early infected fluid collection, prone to develop loculations by fibrinous septations

Thoracic EMPYEMA is a collection of frank PUS within the pleural space

Pleural infection: 80,000 cases/year UK and USA

High associated morbidity and mortality:

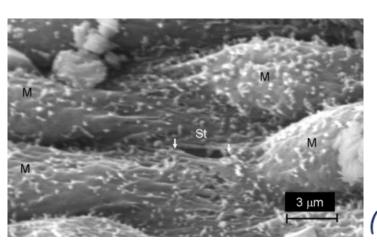

20% pts with empyema die20% pts with empyema require surgery

The incidence of empyema continues to growth with an estimated 65,000 pts affected/year, and an annual cost of 500 million \$ per year

Pleural infection most commonly occurs in paediatric and elderly population

RISK FACTORS:

(same for pneumonia)
diabetes mellitus
immunosuppression
corticosteriod use
gastro-oesophageal reflux
alcohol
intravenous drug abuse



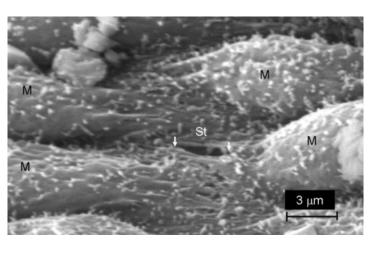
Physiology of the pleura

In health:

Pleural fluid volume < 1 ml (film $\sim 10~\mu m$ between visceral and parietal)

It contains:

proteins at the same concentration of the interstitial fluid small number of cells (mesothelial cells, lymphocytes, macrophages)


LDH (lactate dehydrogenase)

pH: ~7.6

In health:

Normal Pleural Fluid values

Volume: 0.1 to 0.2 ml/kg

Cells per mm3: 1000 to 5000

Mesothelial cells: 3% to 70%

Monocytes: 35% to 70%

Lymphocytes: 2% to 30%

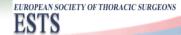
Protein: 1-2 g/dl

Albumin: 50% to 70%

Glucose: similar to plasma levels

LDH: <50% plasma level

pH: ∼7.6

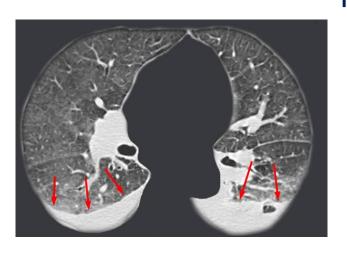


1962: The American Thoracic Society

3 stages:

exudative stage (acute)
fibrinopurulent stage
organized stage with scar tissue
(pleural peel) formation (chronic)

They are not sharply defined, but represent a continuum spectrum


Stage	Phase	Characteristics	Status of Lung Parenchyma	Treatment	
I	Exudative (Acute)	Pleural membrane thickening Fibrin deposition Presence of exudative fluid	Compliant Reexpansion possible with evacuation of fluid	Thoracentesis Closed-tube thoracostomy	
II	Fibrinopurulent	Extensive fibrin deposition Pleural fluid becomes turbid or purulent Presence of loculated empyema	Partial compliance Lung entrapment due to fibrin deposition	Closed-tube thoracostomy with fibrinolytics Thoracoscopy Thoracotomy	
III	Organized (Chronic)	Fibroblast in growth Thickened pus Granulation tissue replacement of the pleural space	No compliance Lung completely entrapped by fibrous peel	Thoracotomy (decortication) Open drainage (Eloesser) Open thoracostomy	

The transition through the 3 phases occurs over a 3 to 6 week period

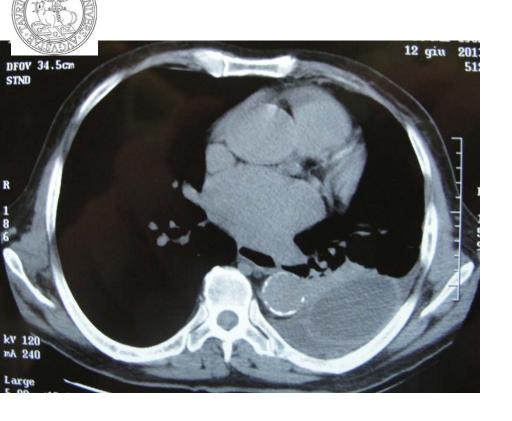
1° stage: exudate

increased capillary vascular permeability proinflammatory cytokines production (IL-8; TNFα)

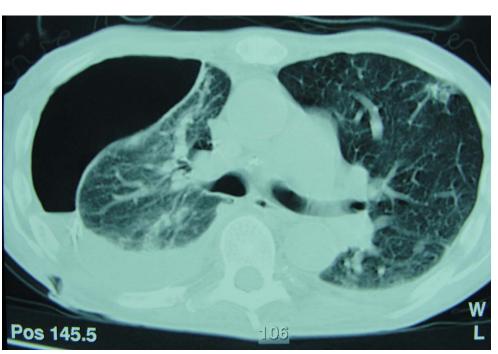
facilitate fluid entry into pleural cavity (free-flowing exudate, normal pH, no bacteria, \LDH \preception glucose)

Antibiotics usually control the disease

Bacterial invasion
Increased fluid accumulation
Fibrin deposition
Septa development
(pH<7.20; glucose<2.2 mmol/l;
LDH> 1000U/l; WBC> 5000mm³)



If not drained, increased amount of bacteria appears and the fluid becomes frankly purulent, giving rise to a true EMPYEMA



Loculations prevent the extension of the infectious process to the whole pleura but make its evacuation by non-surgical means progressively difficult

Stage 3:

ESTS

fibroblast migrate in the pleural cavity and produce an inelastic membrane (pleural peel or cortex) and entrapp the lung rendering it functionless

Pier Luigi Filosso, MD
University of Torino, Department of Thoracic Surgery

Causes of Thoracic Empyema

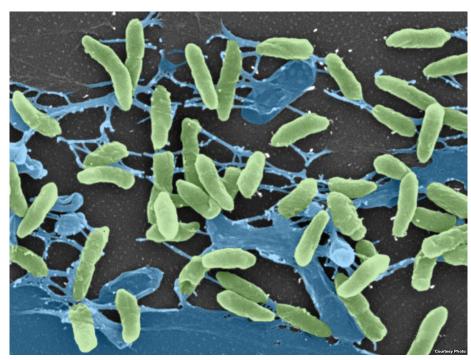
Parapneumonic Effusions: 40% to 60%

Post-thoracotomy: 20%

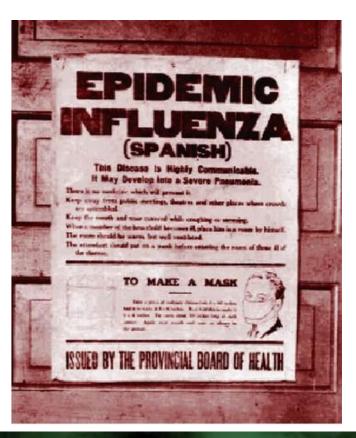
Post-traumatic: 4% to 10%

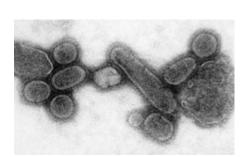
Idiopathic: 9%

Other causes: 5% to 10%



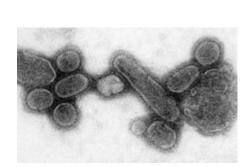
Pleural empyema bacteriology

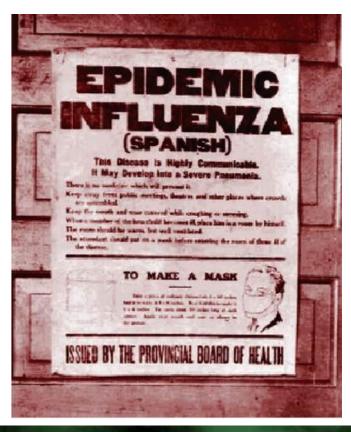



Pathogens isolated have significantly changed since the introduction of antibiotic therapy in the 1940s

1917-1919 **ESTS** Empyema Commission Recommendations:

adequate pus drainage proper nutritional support pleural space obliteration

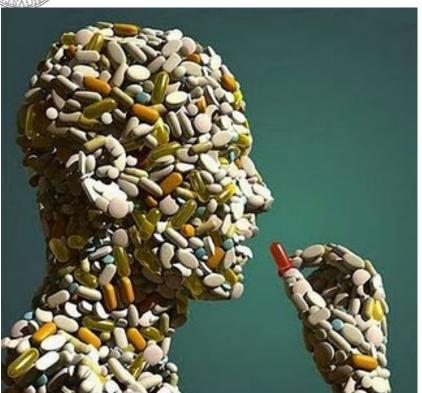




Empyema Commission Recommendations:

mortality reduced to 4.3% in the later stage of the epidemic

Before antibiotics:


60%-70%: *Streptococcus Pneumoniae* (now < 10%)

After antibiotics:

1950's: Staphylococcus Aureus

Now: anaerobic infections Gram-negative organisms

Hospital-acquired

Community-acquired

Common organisms

Streptococcus spp. (~52%)

- ► S milleri
- ► S pneumoniae
- ► S intermedius

Staphylococcus aureus (11%)

Gram-negative aerobes (9%)

- ► Enterobacteriaceae
- ► Escherichia coli

Anaerobes (20%)

- ► Fusobacterium spp.
- ► Bacteroides spp.
- ► Peptostreptococcus spp.
- Mixed

Staphylococci

- Meticillin-resistant S aureus (MRSA) (25%)
- ► S aureus (10%)

Gram-negative aerobes (17%)

- ► E coli
- ► Pseudomonas aeruginosa
- ► Klebsiella spp.


Anaerobes (8%)

Pier Luigi Filosso, MD University of Torino, Department of Thoracic Surgery

EUROPEAN SOCIETY OF THORACIC SURGEONS

ESTS

Fungal empyema is very rare (<1% of all empyemas)

Candida species is the commonest responsible (usually in immunosuppressed pts)

High mortality (> 70%)

ESTS

MANAGEMENT

Pier Luigi Filosso, MD University of Torino, Department of Thoracic Surgery


General rules

ESTS

The sine qua non of empyema management is:
early
adequate
dependent drainage

Pleural empyema management depends on the stage at which it's diagnosed

Diagnostic challenge

ESTS

To distinguish pleural effusions that will respond to antibiotic therapy ALONE from those that need chest drainage or surgery

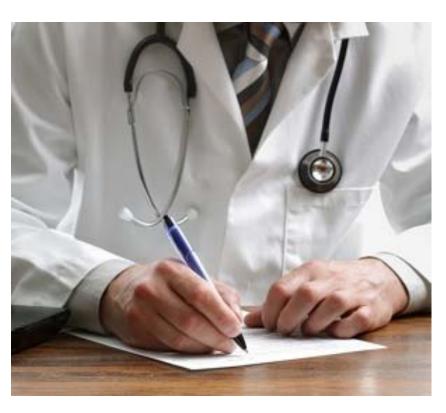
Stage 1 disease

Stage 1

Antibiotics

Pleural effusion drainage

Antibiotics



An early and appropriate antibiotic treatment for the pneumonia minimizes the development of parapneumonic effusions and aborts the progression to complicated effusions or empyema

Antibiotics

Simple parapneum. effusions no longer than that indicated for the underlying pneumonia

Antibiotics

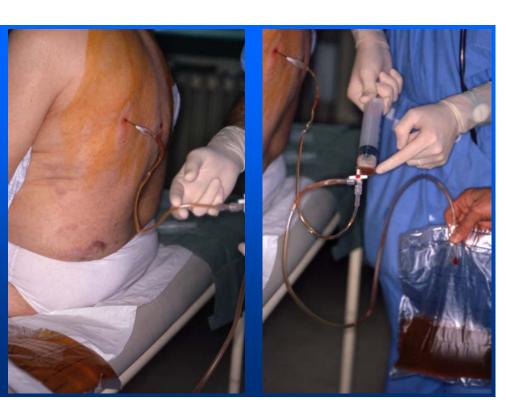
ESTS

Diagnosis and Management of Parapneumonic Effusions and Empyema

Steve A. Sahn

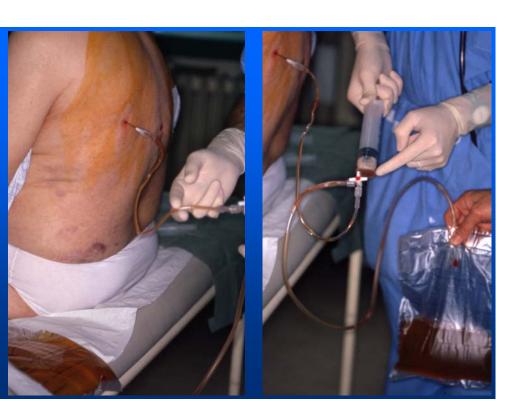
Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston

Approximately 1 million patients develop parapneumonic effusions (PPEs) annually in the United States. The outcome of these effusions is related to the interval between the onset of clinical symptoms and presentation to the physician, comorbidities, and timely management. Early antibiotic treatment usually prevents the development of a PPE and its progression to a complicated PPE and empyema. Pleural fluid analysis provides diagnostic information and guides therapy. If the PPE is small to moderate in size, free-flowing, and nonpurulent (pH, >7.30), it is highly likely that antibiotic treatment alone will be effective. Prolonged pneumonia symptoms before evaluation, pleural fluid with a pH <7.20, and loculated pleural fluid suggest the need for pleural space drainage. The presence of pus (empyema) aspirated from the pleural space always requires drainage. Fibrinolytics are most likely to be effective during the early fibrinolytic stage and may make surgical drainage unnecessary. If pleural space drainage is ineffective, video-assisted thoracic surgery should be performed without delay.


β-lactam antibiotics:

Amoxicillin/Clavulanate
Ticarcillin/Clavulanate
Piperacillin/Tazobactam
Ampicilin/Sulbactam
Quinolones
Imipem
Meropenem

Effusions drainage



Thoracentesis is usually sufficient to drain simple and limited pleural effusions without bacterial infiltration

Effusions drainage

>25% culture-positive parapheumonic effusions in the Stage 1 may respond to thoracentesis

Pneumonia caused by Staphylococcus aureus are less like to respond because of early loculations

Stage 2 disease

Stage 2

Antibiotics

Chest tube drainage

VATS

EUROPEAN SOCIETY OF THORACIC SURGEONS

Chest tube placement

- pleural fluid characteristics
- absence of multiple loculations

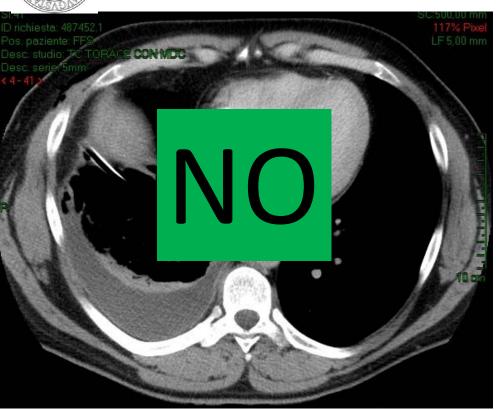
•frank pus

•bacteria on pleural fluid Gram's stain

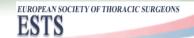
•pleural glucose < 40 mg/dl</p>

•LDH > 1000 IU

•pH < 7.10

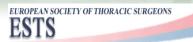


Chest tube placement


Chest tube MUST be placed at the most dependent level and MUST enter the fluid collection

Chest tube placement

Chest tube MUST be placed at the most dependent level and MUST enter the fluid collection





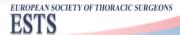
ATTENTION!!!!!

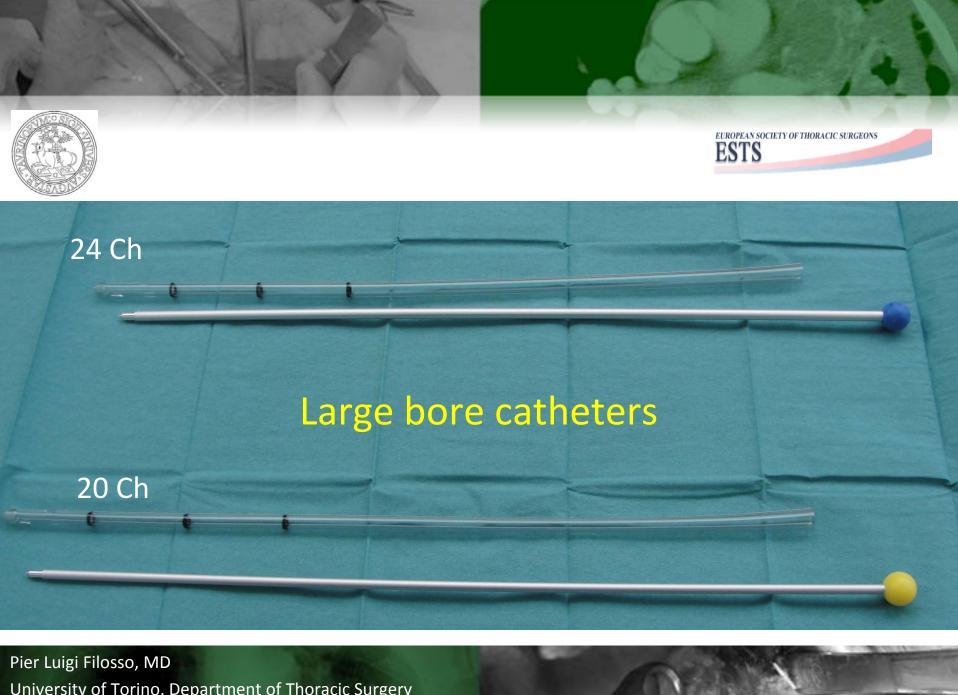
Don't place the drain too much below, to avoid severe injuries...

Pier Luigi Filosso, MD University of Torino, Department of Thoracic Surgery

Chest tube placement

Success rates may vary between 6% and 78%


To be successful the drainage should be reserved for patients with exudative early fibrinopurulent effusions


Chest tube placement

Success rates deteriorate to 35% - 39% in case of true empyema

Which drainage?

University of Torino, Department of Thoracic Surgery

10 Ch

ESTS

Which drainage?

Traditionally, closed chest tube drainage of pus with large bore drains is done without radiological guidance

Large bore drains

Which drainage?

Small bore catheters (10 – 14 Ch) have been employed

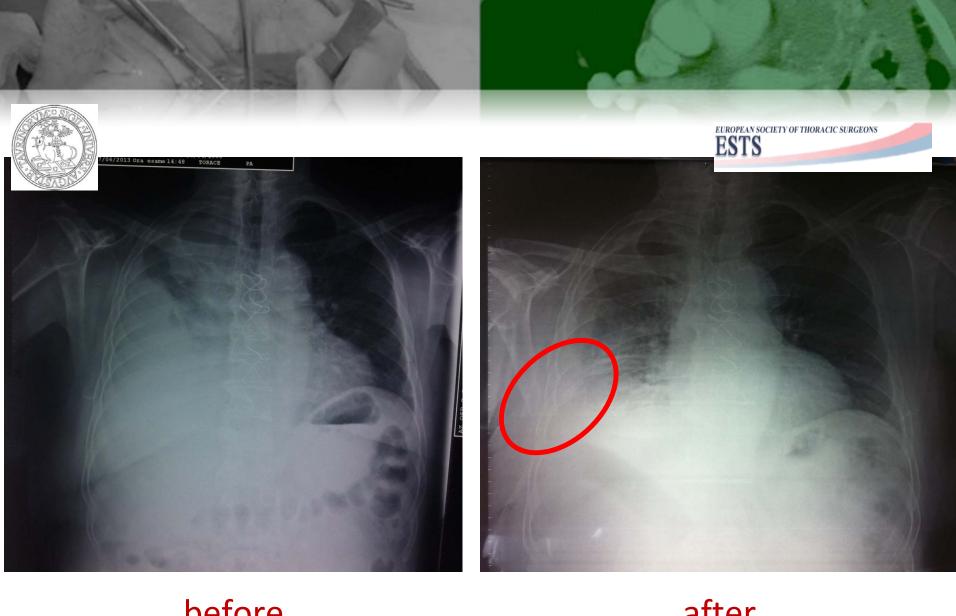
Easier and less traumatic to insert

Which drainage?

Chest drain insertion
(especially small bore one)
is recommended
to be performed under image guidance

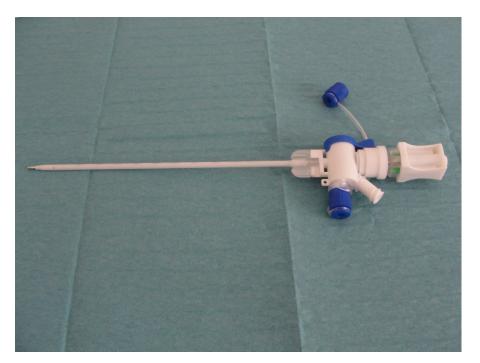
Drainage placement under ultrasonographic guidance

Under CT guidance (multiloculated effusions)



Which drainage?

Chest tube should be chosen according to the parapneumonic radiologic appearance...



before after

Pier Luigi Filosso, MD University of Torino, Department of Thoracic Surgery

Small bore drains

Reported success rates up to 83% - 87%

Drains are better tolerated by the patients, but they're more prone to obstruction by fibrinous debris

Resolution tends to be slower with chest duration:7-26 days

Despite proper positioning and aggressive drainage management, small bore chest tube may fail if it is repeatedly occluded by debris

Which drainage?

ESTS

BTS guidelines

Management of pleural infection in adults: British Thoracic Society pleural disease guideline 2010

Helen E Davies,^{1,2} Robert J O Davies,¹ Christopher W H Davies,² on behalf of the BTS Pleural Disease Guideline Group

¹Oxford Centre for Respiratory Medicine, Churchill Hospital Site, Oxford Radcliffe Hospital, Oxford, UK ²Department of Respiratory Medicine, Royal Berkshire Hospital, Reading, UK

Correspondence to

Dr Christopher Davies,
Department of Respiratory
Medicine, Royal Berkshire
Hospital, Reading RG1 5AN, UK;
chris.davies@royalberkshire.
nhs.uk

INTRODUCTION

Pleural infection is a frequent clinical problem with an approximate annual incidence of up to 80 000 cases in the UK and USA combined. The associated mortality and morbidity is high; in the UK 20% of patients with empyema die and approximately 20% require surgery to recover within 12 months of their infection. Prompt evaluation and therapeutic intervention appears to reduce morbidity and mortality as well as healthcare costs.

This article presents the results of a peerreviewed systematic literature review combined with expert opinion of the preferred management to *Streptococcus pneumoniae* which now only accounts for approximately 10% of culture-positive cases. The prevalence of *Staphylococcus aureus* rose and the development of staphylococcus aureus rose and the 1950s increased complications and mortality. More recently, the reported prevalence of anaerobic infections and Gram-negative organisms has risen. Use of intrapleural fibrinolytic therapy was first suggested in 1949¹¹ but the impure agents available caused adverse reactions. Most recently, early use of video-assisted thoracoscopic surgical (VATS) techniques has been introduced. The suggested in 1949 to the impure agents available caused adverse reactions.


Which drainage?

There's no clear consensus about the optimal chest drain size...

Surgeons tend to use large bore ones to avoid their blockage

ACCP and BTS guidelines recommend 10-14 Ch drains, since they're atraumatic and better tolerated by the patients compared to large bore ones

Following insertion, a pleural suction system (usually -20 cm H_2O) is used to facilitate pleural apposition

Predicting Factors for Outcome of Tube Thoracostomy in Complicated Parapneumonic Effusion or Empyema*

Hsu-Chia Huang, MD; Han-Yu Chang, MD; Chang-Wen Chen, MD; Cheng-Hung Lee, MD; and Tzuen-Ren Hsiue, MD

Study objectives: To determine the predicting factors for outcome of tube thoracostomy in patients with complicated parapneumonic effusion (CPE) or empyema.

Design and settings: Retrospective chart review over a 55-month period at a tertiary referred medical center.

Patients and measurements: The medical charts of patients with empyema or CPE were reviewed. Data including age, gender, clinical symptoms, important underlying diseases, leukocyte count, duration of preadmission symptoms, interval from first procedure to second procedure, the time from first procedure to discharge (recovery time), the amount of effusion drained, administration of intrapleural streptokinase, chest tube size and position, loculation of pleural effusion, and characteristics and culture results of pleural effusion were recorded and compared between groups of patients with successful and failed outcome of tube thoracostomy drainage.

Results: One hundred twenty-one patients were selected for study. One hundred of these patients had received tube thoracostomy drainage with 53 successful outcomes and 47 failed outcomes of chest tube drainage. Nineteen patients received decortication directly, and the other two received antibiotics alone. Univariate analysis showed that pleural effusion leukocyte count, effusion amount, and loculation of pleural effusion were significantly related to the outcome of chest tube drainage. Multiple logistic regression analysis demonstrated that loculation and pleural effusion leukocyte count $\leq 6,400/\mu L$ were the only independent predicting factors related to failure of tube thoracostomy drainage.

Conclusions: Loculation and pleural effusion leukocyte count $\leq 6,400/\mu L$ were independent predicting factors of poor outcome of tube thoracostomy drainage. These results suggest that if the initial attempt at chest tube drainage fails, early surgical intervention should be considered in good surgical candidates with loculated empyema or pleural effusion with leukocyte count $\leq 6,400/\mu L$.

(CHEST 1999; 115:751–756)

Key words: complicated parapneumonic effusion; empyema; predicting factors; tube thoracostomy

Abbreviations: AROC = area under the receiver operating characteristic curve; CI = confidence interval; CPE = complicated parapneumonic effusion; D24 = the volume of pleural effusion drained from the chest tube within the first 24 h; LDH = lactate dehydrogenase; PMN = polymorphonuclear leukocyte; TNF = tumor necrosis factor Retrospective review of 100 pts managed by tube thoracostomy:

EUROPEAN SOCIETY OF THORACIC SURGEONS

53%: resolution without other interventions

Independent predictors of failure: loculated empyema pleural fluid leukocyte < 6400µg/l

Intrapleural instillation of fibrinolytic agents have been advocated in case of failure of resolution with chest tube placement

Table 2 Randomized clinical trials investigating intrapleural fibrinolytic therapy for empyema

Author	Number of Patients	Success (%)	Complications (%)
Bouros et al ¹⁰	Streptokinase group = 25 Urokinase group = 25	Streptokinase group = 92 Urokinase group = 92	28 developed elevation in temperature
Davies et al ¹¹	Streptokinase group = 12 Control = 12	Streptokinase group = 100 Control = 83	None
Tuncozgur et al ¹²	Urokinase group = 25 Control = 24	Urokinase group = 71 Control = 40	None
Diacon et al ¹³	Streptokinase group = 22 Control = 22	Streptokinase group = 82 Control = 48	None
Maskell et al ¹⁴	Streptokinase group = 208 Control = 222	Streptokinase group = 69 Control = 73	7 (chest pain, fever)
Misthos et al ¹⁵	Streptokinase group = 57 Control = 70	Streptokinase group = 88 Control = 67	None

Surgical versus non-surgical management of pleural empyema (Review)

Coote N, Kay ES

Fibrinolytic therapy reduced the need for surgery when compared with chest tube placement alone

(RR 0.63; 95% CI: 0.46-0.86)

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in *The Cochrane Library* 2009, Issue 3

BTS guidelines

Management of pleural infection in adults: British Thoracic Society pleural disease guideline 2010

Helen E Davies, 1.2 Robert J O Davies, 1 Christopher W H Davies, 2 on behalf of the BTS Pleural Disease Guideline Group

¹Oxford Centre for Respiratory Medicine, Churchill Hospital Pleural infection

Site, Oxford Radcliffe Hospital,

²Department of Respiratory

Medicine, Royal Berkshire

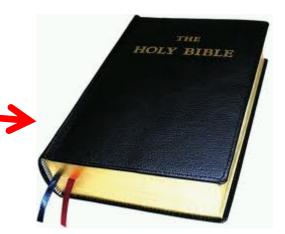
Hospital, Reading, UK

Correspondence to

Dr Christopher Davies,

Department of Respiratory

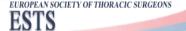
Medicine, Royal Berkshire Hospital, Reading RG1 5AN, UK;


chris.davies@royalberkshire.

Oxford, UK

Pleural infection is a frequent clinical problem with an approximate annual incidence of up to 80 000 cases in the UK and USA combined. The associated mortality and morbidity is high; in the UK 20% of patients with empyema die and approximately 20% require surgery to recover within 12 months of their infection.¹ Prompt evaluation and therapeutic intervention appears to reduce morbidity and mortality as well as healthcare costs.³

This article presents the results of a peerreviewed systematic literature review combined with expert opinion of the preferred management to Streptococcus pneumoniae which now only accounts for approximately 10% of culture-positive cases. The prevalence of Staphylococcus aureus rose and the development of staphylococcal resistance in the 1950s increased complications and mortality. More recently, the reported prevalence of anaerobic infections? On and Gram-negative organisms 10 has risen. Use of intrapleural fibrinolytic therapy was first suggested in 194911 but the impure agents available caused adverse reactions. Most recently, early use of video-assisted thoracoscopic surgical (VATS) techniques has been introduced. 12


Current evidence does not support the routine use of intrapleural fibrinolytic agents

Pier Luigi Filosso, MD University of Torino, Department of Thoracic Surgery

Fibrinolytic therapy

BTS guidelines

Management of pleural infection in adults: British Thoracic Society pleural disease guideline 2010

Helen E Davies, 1.2 Robert J O Davies, 1 Christopher W H Davies, 2 on behalf of the BTS Pleural Disease Guideline Group

¹Oxford Centre for Respiratory Medicine, Churchill Hospital Site, Oxford Radcliffe Hospital,

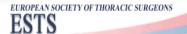
Oxford, UK

²Department of Respiratory
Medicine, Royal Berkshire
Hospital, Reading, UK

Correspondence to Dr Christopher Davies,

Dr Christopher Davies,
Department of Respiratory
Medicine, Royal Berkshire
Hospital, Reading RG1 5AN, UK;
chris.davies@royalberkshire.
nhs.uk

Pleural infection is a frequent clinical problem with an approximate annual incidence of up to 80 000 cases in the UK and USA combined. The associated mortality and morbidity is high; in the UK 20% of patients with empyema die and approximately 20% require surgery to recover within 12 months of their infection.¹ Prompt evaluation and therapeutic intervention appears to reduce morbidity


INTRODUCTION

and mortality as well as healthcare costs.⁵

This article presents the results of a peerreviewed systematic literature review combined
with expert opinion of the preferred management

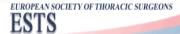
to Streptococcus preumoniae which now only accounts for approximately 10% of culture-positive cases. The prevalence of Staphylococcus aureus rose and the development of staphylococcul resistance in the 1950s increased complications and mortality. More recently, the reported prevalence of anaerobic infections? In an Gram-negative organisms 10 has risen. Use of intrapleural fibrinolytic therapy was first suggested in 1949¹¹ but the impure agents available caused adverse reactions. Most recently, early use of video-assisted thoracoscopic surgical (VATS) techniques has been introduced. The control of the control of

Physical decompression of multiloculated pleural collections causing dyspnoea or resp. failure when surgery is not immediately feasible or at high risk

Acute Hypoxemic Respiratory Failure Following Intrapleural Thrombolytic Therapy for Hemothorax*

Michael D. Frye, M.D., F.C.C.P.; Mikell Jarratt, M.D.; and Steven A. Sahn, M.D., F.C.C.P.

Intrapleural instillation of thrombolytic agents has been useful in the treatment of hemothorax when thoracostomy tube drainage is unsuccessful. We present a patient who developed acute hypoxemic respiratory failure following the intrapleural instillation of both streptokinase and urokinase 24 h apart. Hypoxemia most likely resulted from a direct effect of the products of fibrinolysis on the pulmonary circulation.

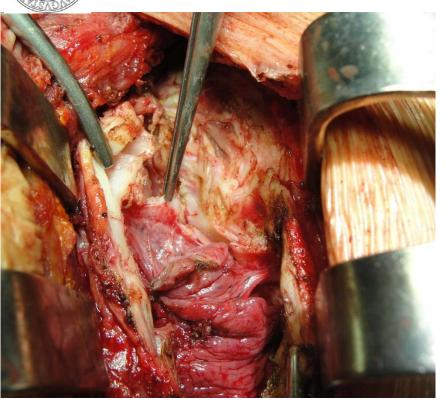

(Chest 1994; 105:1595-96)

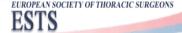
CO=cardiac output; FDP=fibrin degradation products; PAP=pulmonary artery pressure; PCWP=pulmonary capillary wedge pressure

Complications of the therapeutic use of intrapleural thrombolytic agents are infrequent. Although intravascular administration has been associated with adult respiratory distress syndrome (ARDS) in two patients, 1,2 intrapleural instillation has not been previously reported to lead to pulmonary complications. We recently observed a patient who developed two episodes of severe hypoxemia related to the instillation of two different thrombolytic agents.

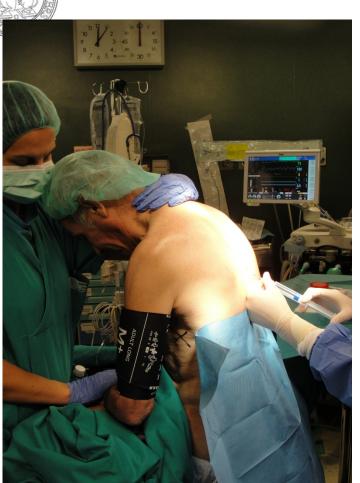
Report of ARDS in a patient who received both urokinase and streptokinase for empyema

Surgery




Most patients require surgery to promote drainage because of the presence of viscous pleural fluid or multiple loculations

Delay in elective drainage may allow the creation of pleural peel, prolong the hospital stay and increase hospital costs


Indications to surgical drainage:

- Extent of loculations
- Patient's operability
- Lung capability to re-expand
- Possible BPF

Double lumen tracheal ventilation

(fundamental for VATS and thoractomy; also in case of BPF)

Postoperative pain control

(epidural analgesia)

Early pts deambulation

(portable suction devices)

Low weigh heparin subcutaneously

Tips & Tricks:

Aggressive chest physioterapy and incentive spirometry to allow:

deep breath cough secretion removal lung re-expansion

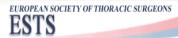

Suggestions:

Portable suction devices allow an early hospital discharge and patient can be safely managed at home

VATS is useful during the fibrinopurulent stage of empyema

Breakdown of all loculations, drainage of the gelatinous exudate, removal of fibrin and thin peels from the visceral pleura, allowing complete lung re-expansion

Small "utility" mini-thoracotomy is sometimes needed to achieve a complete lung re-expansion

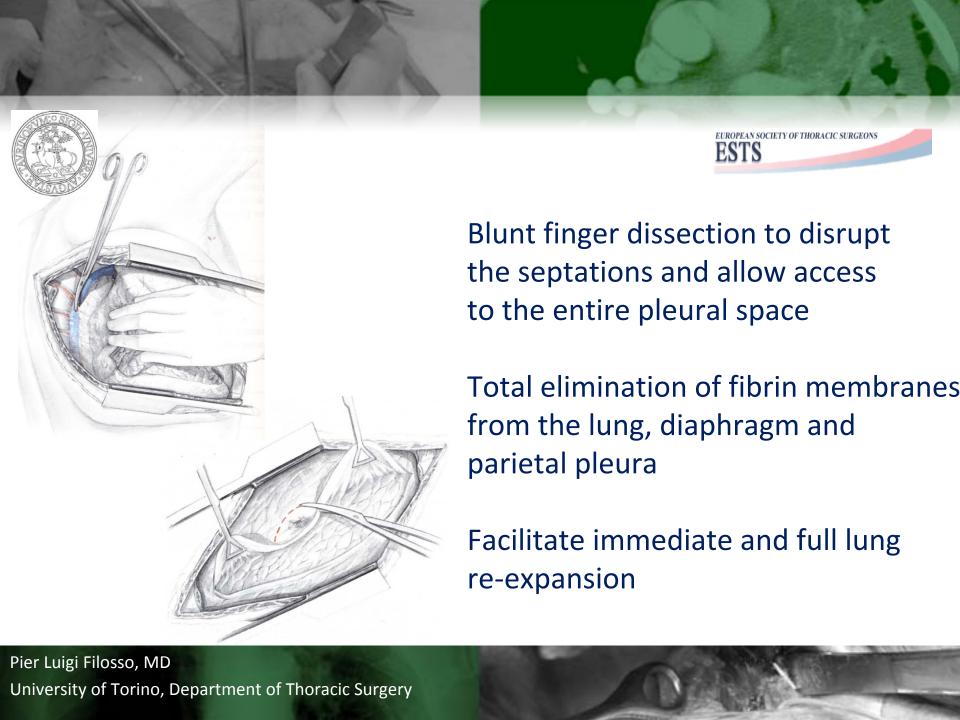


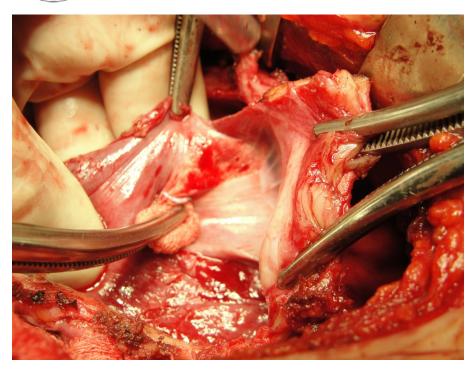
Through the mini-thoracotomy a correct loculation debridment is feasible and may be more effective

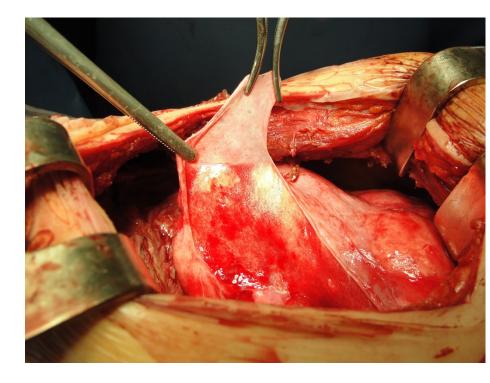
Stage 3 disease

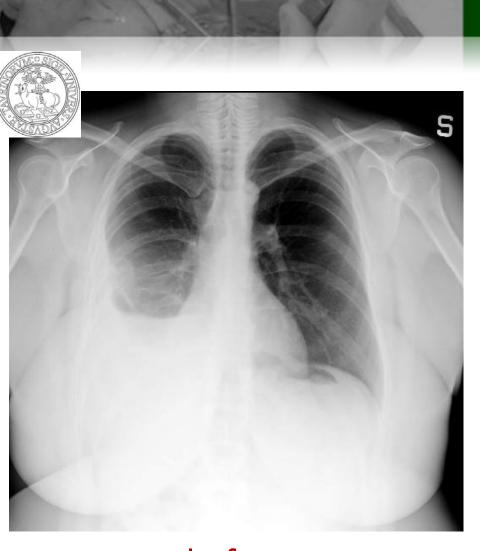
Stage 3

Thoracotomy



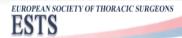

Early thoracotomy for pleural space infection evacuation is usually performed in the initial phase of the organizing stage (Stage 3)


Pleural surfaces are covered by an amorphous gelatinous fluid, but a true fibrous peel has not yet formed



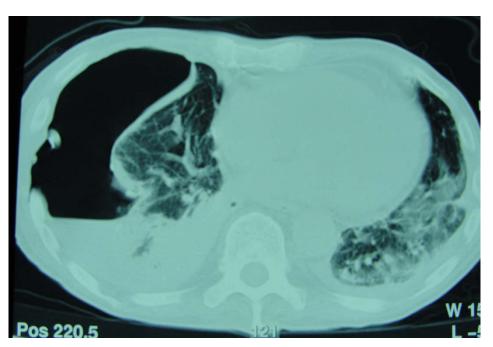
2 large bore chest drainages are placed at the end of intervention, one anteriorly, one posteriorly

Additional chest drains may be used to drain small inaccessible pleural areas

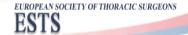

Drainages must be placed under suction (-20 cm H₂O)

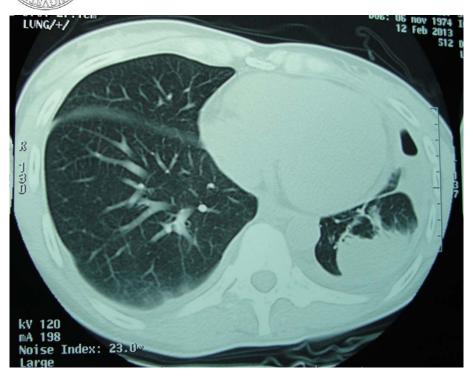
before

after



Chronic empyema




In a chronic empyema the presence of dense pleural peel makes impossible the lung re-expansion

The lung is entrapped and the pleural space obliteration is impossible

The result of a chronic empyema is frequently a fibrothorax

Causes of Chronic Empyema

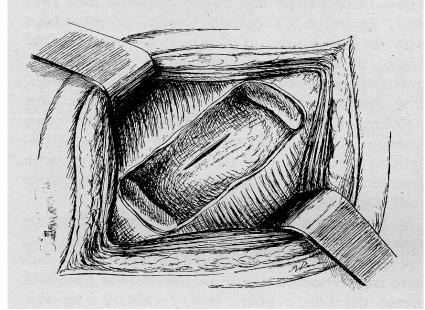
Delay in diagnosis

Inadequate drainage in acute stage

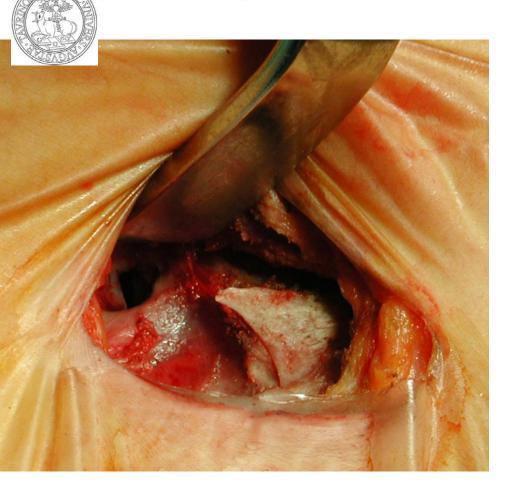
Continuing reinfection (bronchopleural fistula)

Retained haemothorax

Specific infections (i.e.: tuberculosis or fungal infection)

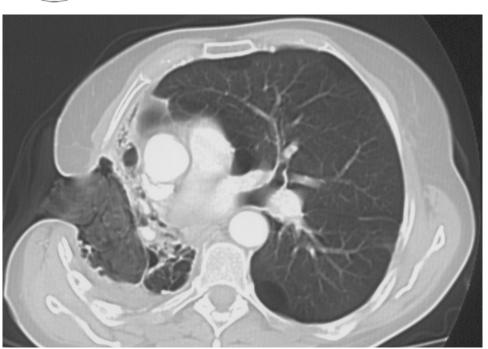

In an acceptable surgical candidate decortication remains the procedure of choice

An alternative is rib resection and large bore chest tube placement



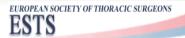
Rib resection and drainage

The tube may be slowly retracted over the course of weeks or months, while the infected space heals behind it


The patient may be managed also as outpatients, with a close surveillance

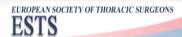
ESTS

Postoperative chest X-ray


Open window

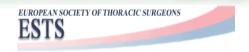
ESTS

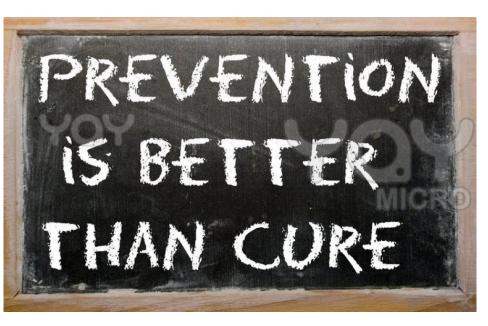
Open window is the treatment of choice in case of debilitated patient with chronic empyema


It's imperative to place the window at the inferior aspect of the cavity and to make the chest wall opening large enough to accomodate one's fist

ATTENTION!!!

Open window thoracostomy tends to close spontaneously





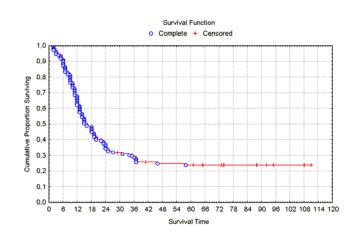
Special issue: Postpneumonectomy empyema

Prevention

Treat the bronchial stump with respect

Avoid devascularization

Avoid excessive lenght

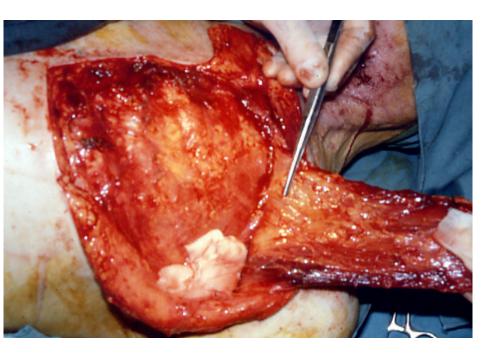

Cover the stump with pleura or pericardium or muscle if preop.

RT/CT has been done

Incidence

The overall BPF incidence is estimated to be between 1.6% and 2.7%, and 2/3 of these patients received induction chemo/radiotherapy

Early BPF occurs within few days or up to 1 – 2 weeks after a pneumonectomy


frothy pink sputum air fluid level on chest X-ray persistent low-grade fever persistent clinical complaints

Bronchoscopy confirm the suspect of BPF

Treatment goals:

Secure close the bronchial stump obliterate the empyema cavity

Immediate re-exploration with stump closure and reinforcement with a pedicled muscle flap (intercostal, latissimus dorsi, serratus anterior, pectoralis major) and pleural space drainage (Clagett & Geraci procedure)

Predictors of Successful Closure of Open Window Thoracostomy for Postpneumonectomy Empyema

Fabio Massera, MD, Mario Robustellini, MD, Claudio Della Pona, MD, Gerolamo Rossi, MD, Adriano Rizzi, MD, and Gaetano Rocco, MD, FRCS (Ed)

Division of General Thoracic Surgery, "E. Morelli" Regional Hospital, Sondalo, Division of General Thoracic Surgery, Humanitas Gavazzeni Hospital, Bergamo, and Division of General Thoracic Surgery, National Cancer Institute, Pascale Foundation, Naples, Italy

Background. Although the open window thoracostomy (OWT) represents the ideal method for drainage of post-pneumonectomy empyema (PPE), several controversies exist concerning its closure.

Methods. Between January 1993 and December 2003, an OWT was created in 31 patients (29 male and 2 female) with PPE. The median age was 61 years (range, 32 to 76). In 26 patients (84%) a bronchial stump fistula developed. The OWT closure was correlated with characteristics of PPE and the timing of OWT.

Results. In 15 patients (48%), the OWT could be closed by obliteration of pleural cavity with antibiotic solution (3 patients) or intrathoracic muscle transposition (12 patients). A successful closure was observed in 13 of the 15 patients (87%). All patients closed by Clagett's procedure remained empyema free. Recurrent cancer (n = 4), poor functional status (n = 3), refusal of further operation (n = 2), and persistent tuberculous empyema (n = 2) were common causes of failure of OWT closure. Univariate analysis revealed that the timing of empyema development after surgery (p=0.02) and the timing of OWT (p=0.03) were significant predictors of thoracostomy closure.

Conclusions. Late onset of PPE and immediate OWT creation are significant predictors of OWT closure. Smaller dimensions of the pleural cavity appeared to increase the likelihood of closure. When the pleural cavity shows healthy granulation tissue and no bronchopleural fistula, the Clagett's procedure is safe and effective to obliterate the pleural cavity. Obliteration by muscle flap transposition can be reserved for patients with persistent or recurrent bronchopleural fistula.

(Ann Thorac Surg 2006;82:288–92) © 2006 by The Society of Thoracic Surgeons Massera and Coll advocated an early open window thoracostomy for BPF

Late BPF presentation and early open window procedure were independent predictors of successful BPF management

Chest tube management

One or two chest tubes are placed at the end of surgery and left under suction (-20 cm H₂O)

They can be removed when there are:

no signs of infection no more pus no more than 100 ml-150 ml /24 h no air leaks

In case of persistent serous fluid, the drain may be connected with an Heimlich valve, making the patient able to walk and to be discharged from the hospital

Be careful not to remove too soon the drains....

Fast-track surgery does not exist in case of pleural empyema

ESTS

Conclusions

Турин, Италия

Early intervention of pleural space infection is the key to prevent chronic empyema

The advent of VATS made it possible to treat stage I and stage II empyema with significantly less morbidity

Management of chronic empyema remains a major challenge in Thoracic Surgery

EMPYEMA NEEDS TO BE
TREATED AND MANAGED
URGENTLY, TO AVOID THESE
CONSEQUENCES...

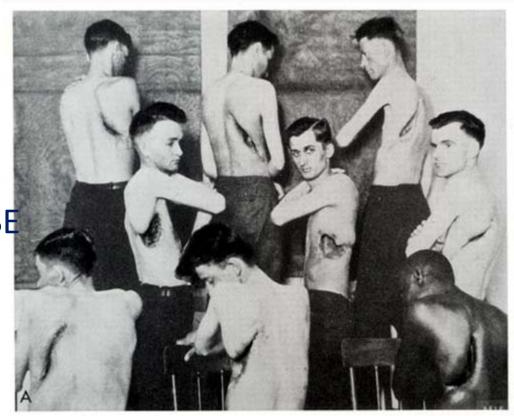


Figure 109.—Comparative results of management of empyema in World Wars I and II. A. Typical patients with chronic empyema in Zone of Interior hospitals in World War I (2).

Thank you very much for your attention...

Турин, Италия

ESTS